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We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann
equation, using an infinitely strong shock wave as probe. Density, velocity, and temperature profiles are
obtained as a function of the mixture mass ratio �. We show that temperature overshoots near the shock layer,
and that heavy particles are denser, slower, and cooler than light particles in the strong nonequilibrium region
around the shock. The shock width ����, which characterizes the size of this region, decreases as ����
��1/3 for �→0. In this limit, two very different length scales control the fluid structure, with heavy particles
equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium: ��x�
�exp�−x /��. The scale separation is also apparent here, with two typical scales, �1 and �2, such that �1

��1/2 as �→0, while �2, which is the slow scale controlling the fluid’s asymptotic relaxation, increases to a
constant value in this limit. These results are discussed in light of recent numerical studies on the nonequilib-
rium behavior of similar one-dimensional binary fluids.
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I. INTRODUCTION

When a piston moves at constant velocity into a fluid, it
generates a shock wave �1�. This is a strong perturbation that
drives the system far from equilibrium. Studying the struc-
tural properties of the shock wave, and how equilibrium is
restored behind it, we may extract valuable information on
the fluid’s transport properties, the damping of nonequilib-
rium fluctuations, etc. That is, we may use the shock wave as
a probe to better understand the nonequilibrium response of
the fluid. This is particularly appealing for one-dimensional
�1D� systems. Their nonequilibrium behavior has attracted
much attention during the last years �2–19�. This follows
from two main reasons. On one hand, the dimensional con-
straint characteristic of 1D systems plays an essential role in
many real structures, ranging from carbon nanotubes �4� to
anisotropic crystals �5�, magnetic systems �6�, solid copoly-
mers �7�, semiconductor wires �8�, zeolites �9�, Bose-
Einstein condensates �10�, colloids in narrow channels �11�,
DNA, nanofluids, etc �2�. On the other hand, the simplicity
and versatility of 1D models allow one to tackle fundamental
questions in nonequilibrium statistical mechanics, such as
those related to irreversibility, normal transport, equiparti-
tion, local thermodynamic equilibrium, etc. �2�.

In this way, it has been found that the low dimensionality
can give rise to anomalous transport properties in 1D fluids.
To be more specific, the single-file constraint characteristic
of 1D fluids introduces strong correlations between neigh-
boring particles, which asymptotically suppress mass trans-
port �11� and enhance heat conduction �12–19�. In particular,
it is currently believed �see, however, �12,13�� that 1D fluids
with momentum-conserving interactions and nonzero total
pressure exhibit a thermal conductivity � that diverges as �
�L� when the system size L→� �14–18�. However, there is
no complete agreement yet on the exponent ��0: there ex-
ists strong numerical and theoretical evidence pointing out

that �=1/3 �14,15�, although mode-coupling theories and
Boltzmann equation analysis predict �=2/5 �16,17�, while
other numerical results are closer to �=1/4 �18�. Conserva-
tion of momentum seems to be crucial; as soon as this sym-
metry is broken, normal heat transport is recovered �19�.
Moreover, momentum-conserving 1D fluids typically exhibit
other anomalies when perturbed away from equilibrium, as,
for instance, dynamic nonequipartition of energy, emergence
of multiple relaxation scales, energy localization, etc.
�12,13,15,18,20�. In general, the behavior of 1D fluids far
from equilibrium still poses many intriguing questions that
require further investigation.

In this paper we probe the nonequilibrium response of a
1D model gas. In particular, we address the problem of an
infinitely strong shock wave propagating into a 1D binary
fluid, within the context of the Boltzmann equation �21–23�.
The shock wave characterizes the transition between two dif-
ferent asymptotic equilibrium states of the fluid. For strong
shock waves �to be specified later�, this transition happens
within molecular scales, so that kinetic �Boltzmann� equa-
tions must be used. In fact, one may think of the shock wave
problem as the simplest case study dominated by the nonlin-
earity of the Boltzmann equation �26�. As we will see below,
the Boltzmann equation provides a powerful tool to investi-
gate the observed structural and relaxational anomalies in 1D
fluids. Kinetic theory methods have been applied to study
strong shock waves in high-dimensional simple fluids
�24–26�. However, in one dimension, a simple �i.e., mono-
component� fluid constitutes a pathological limit �27�. This
follows from the fact that particles with equal masses in 1D
interchange their velocities upon collision, so that a 1D
monocomponent fluid can be regarded to a large extent as an
ideal gas of noninteracting particles �28�. We may restore
ergodicity and relaxation in velocity space by introducing
different masses. The simplest case is that of a binary mix-
ture. In particular, we study in this paper a binary 1D fluid
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composed by two species of hard-point particles, with
masses m1	m2 and equal concentrations. Energy transport
in this model has already been extensively studied via mo-
lecular dynamics simulations �12,13,15,18,37�.

The structure of the paper is as follows. In Sec. II, we
write down the relevant Boltzmann equation for our 1D bi-
nary fluid, and extend a method by H. Grad �24,26� to study
the structure of an infinitely strong shock wave propagating
through the fluid. The results of this approach are described
in Sec. III. In particular, we study there the shock hydrody-
namic profiles, paying special attention to the shock width
and the relaxation toward equilibrium, as a function of the
mass ratio. Finally, in Sec. IV we discuss our results.

II. THE SHOCK-WAVE PROBLEM

The Boltzmann equation for a 1D binary fluid in a refer-
ence frame moving with the shock wave reads �21–23,26,29�

v
df1

dx
= Q1�f1, f2� − f1
�f2� , �1�

v
df2

dx
= Q2�f2, f1� − f2
�f1� . �2�

Here, f i�x ,v� is the probability density for finding a particle
of type i=1,2 �i.e., mass mi� at position x with velocity v,
and Qi and 
 represent the gain term and collision frequency
in the collision operator, respectively. They are defined as

Qi�f i, f j� = �
−�

+�

dw�v − w�f i�x,vi��f j�x,wi�� , �3�


�f i� = �
−�

+�

dw�v − w�f i�x,w� . �4�

Index j refers here to particle species other than i, and
�vi� ,wi�� are precollisional velocities that after collision give
rise to velocities �v ,w� for the pair �i , j�; namely,

vi��v,w� =
�mi − mj�v + 2mjw

mi + mj
,

wi��v,w� =
�mj − mi�w + 2miv

mi + mj
. �5�

Notice that Eqs. �1� and �2� only include the effect of cross-
collisions between the different species, and no self-
collisions between like particles. This reflects the one-
dimensional character of our model fluid, and it is a main
contrast to the Boltzmann equation for mixtures in higher
dimensions.

The structure of the shock wave can be deduced from
Eqs. �1� and �2� subject to the boundary conditions

f i�x,v� → Gi,±�v�, as x → ± � , �6�

where

Gi,±�v� � n±	 mi

2�T±
exp
−

mi�v − u±�2

2T±
� . �7�

Here n±, T±, and u± are, respectively, the number density,
temperature, and macroscopic velocity at x→ ±� �30�. One
usually chooses u+�0, which implies �see below� u−�0.
This represents a flow of the fluid mixture from −� �up-
stream or preshock region� to +� �downstream or aftershock
region�.

We are particularly interested in the structure of an infi-
nitely strong shock wave. In this way we can probe the re-
sponse of the 1D binary mixture in the strong nonequilibrium
regime, far from the linear response region �22�. The strength
of a shock may be defined in several ways. One of them is
based on the ratio of downstream to upstream pressures, r
= p+ / p−, where p±=n±T±. Weak shocks have a ratio r close to
unity. In this case, the shock thickness is large as compared
to the mean free path, and continuum approximations of the
type of Navier-Stokes �or Euler, Burnett, etc.� may be used to
characterize the shock structure �1�. However, as r grows the
shock thickness becomes comparable to the mean free path,
making inappropriate the application of hydrodynamic ap-
proximations. In this case kinetic equations, as those in �1�
and �2�, must be used instead. We pay attention in what
follows to the limit r→�, or equivalently, T−→0.

The parameters entering the two limiting Maxwellians �7�
are related due to conservation of particle number, total mo-
mentum, and total energy. Such conservation laws can be
expressed as the constancy of the corresponding fluxes,
which yields

n+u+ = n−u−,

n+��m1 + m2�u+
2 + 2T+� = n−��m1 + m2�u−

2� ,

n+��m1 + m2�u+
3 + 6u+T+� = n−��m1 + m2�u−

3� . �8�

These are the Rankine-Hugoniot conditions, which relate the
downstream and upstream values of the flow fields in the
mixture �1�. Solving this system for the downstream
asymptotic flow fields one finds �31�

n+ = 2n−, u+ =
u−

2
, T+ =

1

8
�m1 + m2�u−

2 . �9�

Therefore, the downstream asymptotic density �velocity� is
twice �half� the upstream one for r→�. It must be noticed
that these results come from the conservation laws character-
izing the two-component fluid, and have nothing to do with
the hydrodynamic behavior of the mixture. In this way it is
not strange that even in nonhydrodynamic cases, as the equal
mass version of our one-dimensional gas �28�, the results
�Eq. �9�� hold.

The case of a infinitely strong shock has been studied in
detail for mono-component gases in dimensions larger than
one �24,26�. Extending a hypothesis by H. Grad �24�, we
suggest here that the problem of a shock wave in our 1D
mixture is in general well defined in the limit r→�, and that
in this case the distribution functions f i can be decomposed

into a singular part � f̂ i� proportional to a Dirac �-function on
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the upstream velocity u−, and a regular part � f̃ i� smoother
than the former. This is because for r→�, particles in the
upstream region exhibit a well-defined fixed thermal velocity
when measured on the downstream velocity scale. Hence,

f i = f̂ i + f̃ i, with f̂ i�x,v� = n̂i�x���v − u−� . �10�

The singular particle densities n̂i�x� control how important
the singular component is at a given coordinate x. In particu-
lar, it is evident that n̂i�x�→n− as x→−�, and n̂i�x�→0 as
x→ +�. Introducing the above decomposition �10� into Eqs.
�1� and �2�, we may split the original Boltzmann equations in
two different sets, attending to the singular or regular char-
acter of the terms

v
df̂ i

dx
+ f̂ i
� f̃ j� = Qi� f̂ i, f̂ j� − f̂ i
� f̂ j� , �11�

v
df̃ i

dx
− Qi� f̃ i, f̂ j� − Qi� f̂ i, f̃ j� + f̃ i
� f̂ j� = Qi� f̃ i, f̃ j� − f̃ i
� f̃ j� ,

�12�

with i=1,2. Equation �12� for the regular component f̃ i looks
more complicated than the original Boltzmann equations �1�
and �2�. However, as an advantage, it lacks the singular be-
havior, characterizing for r→� the whole distribution f i.
This allows us to perform a simple local Maxwellian ap-

proximation for f̃ i that yields meaningful results. In particu-
lar, we now assume

f̃ i�x,v� = ñi�x�	 mi

2�T̃i�x�
exp
−

mi�v − ũ�x��2

2T̃i�x�
� . �13�

Here, ñi�x�, ũ�x�, and T̃i�x� are the number density, velocity,

and temperature respectively, associated with f̃ i. Now ñi�x�
→0 as x→−� and ñi�x�→n+ as x→ +�. We have also as-
sumed at this point that the regular flow velocity ũ�x� does
not depend on particle species. This assumption seems natu-
ral given the one-dimensional character of the system, which
forces neighboring particles to move coherently on average.
Therefore, the problem of the shock wave structure reduces
to computing the spatial dependence of seven different flow

fields; namely, n̂i�x�, ñi�x�, T̃i�x�, and ũ�x�, i=1,2.
It is important to notice that the Maxwellian approxima-

tion �13� is not a local thermodynamic equilibrium hypoth-

esis, since it affects only the regular component f̃ i�x ,v� of
the distribution function. The singular, delta-like component

f̂ i�x ,v� accounts for the most important nonequilibrium ef-
fects. However, it is natural to question the validity of �13�
for the present strong nonequilibrium problem. This approxi-
mation is just the zeroth-order term in a formal expansion of

f̃ i�x ,v� around local Maxwellian behavior, in the spirit of
Sonine polynomials expansions, Gram-Charlier and Edge-
worth series, etc. �32–34�. One would expect that higher-
order terms in this expansion could be relevant near the
shock layer. In fact, such slight deviations have been ob-
served in monocomponent gases in higher dimensions �26�.

However, these small corrections have negligible effects on
the shock hydrodynamic profiles �26�, and therefore are not
important for our discussion here.

We may use �10� and �13� to compute the local hydrody-
namic currents. Let Ji,n�x�, Ji,v�x� and Ji,e�x� be the particle,
momentum, and energy fluxes of species i at position x, re-
spectively. They can be written as

Ji,n�x� � �
−�

+�

dv vf i�x,v� = ñiũ + n̂iu−, �14�

Ji,v�x� � �
−�

+�

dv miv
2f i�x,v� = mi�ñiũ

2 + n̂iu−
2� + ñiT̃i,

�15�

Ji,e�x� � �
−�

+�

dv miv
3f i�x,v� = mi�ñiũ

3 + n̂iu−
3� + 3ũñiT̃i,

�16�

�A trivial factor 1
2 has been omitted in the definition of the

energy flux for convenience�. Given the constancy of the
total fluxes along the system, we now write the Rankine-
Hugoniot conditions as

ñ1ũ + n̂1u− = n−u−, �17�

ñ2ũ + n̂2u− = n−u−, �18�

m1�ñ1ũ2 + n̂1u−
2� + m2�ñ2ũ2 + n̂2u−

2� + p̃1 + p̃2 = n−�m1 + m2�u−
2 ,

�19�

m1�ñ1ũ3 + n̂1u−
3� + m2�ñ2ũ3 + n̂2u−

3� + 3ũ�p̃1 + p̃2�

= n−�m1 + m2�u−
3 , �20�

where p̃i= ñiT̃i is the pressure of the regular component f̃ i.

Defining M̃ �m1ñ1+m2ñ2, M̂ �m1n̂1+m2n̂2, M−��m1

+m2�n−, and P̃� p̃1+ p̃2, we obtain

M̃ũ = 
̂u−, M̃ũ2 + P̃ = 
̂u−
2, M̃ũ3 + 3ũP̃ = 
̂u−

3 ,

�21�

where 
̂�M−−M̂. Using the first relation in the second

equation, one has P̃= 
̂u−�u−− ũ�, and inserting this expres-

sion into the third equation yields �after division by 
̂u−�
2ũ−3u−ũ+u−

2 =0. This equation has solution ũ=u− /2 �the
second root, ũ=u−, is trivial and can be neglected as incom-
patible with the boundary condition at +��. Therefore, the
regular flow velocity is constant along the system, and equal
to its asymptotic value at +�, u+. Using this in Eqs. �17� and
�18�, one has

ñi�x� = 2�n− − n̂i�x��, i = 1,2, �22�
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ũ�x� =
1

2
u−. �23�

Combination of these results with P̃= 
̂u−�u−− ũ� yields a
relation for the regular pressures; namely,

p̃1 + p̃2 =
u−

2

4
�m1ñ1 + m2ñ2� . �24�

These manipulations are intended to express all remaining
flow fields in terms of the singular particle densities n̂i�x�.
Equations for these singular densities can be derived inte-
grating with respect to v �Eq. �11�� for the singular compo-

nent f̂ i �35�. This yields

u−
dn̂i�x�

dx
= 2� j�x�n̂i�x��n̂j�x� − n−� , �25�

where

�i�x� �
u−

2
erf
	 mi

2T̃i�x�

u−

2 � +	2T̃i�x�
�mi

exp
−
miu−

2

8T̃i�x�
� ,

�26�

and where we have used results �22� and �23�. To completely
specify the flow fields, we need another expression relating
the regular pressures p̃i to the other fields. This relation can
be derived studying the momentum and energy transfer from
species i to species j. Multiplying Eq. �1� by miv �momen-
tum transfer� or miv2 �energy transfer� and integrating over
v, we arrive at differential equations for Ji,v�x� and Ji,e�x� of
the form

dJi,v

dx
= �i�x� , �27�

dJi,e

dx
= �i�x� , �28�

where the fluxes are defined in Eqs. �15� and �16�, and

�i�x� � �
−�

+�

dv miv�Qi�f i, f j� − f i
�f j�� , �29�

�i�x� � �
−�

+�

dv miv
2�Qi�f i, f j� − f i
�f j�� . �30�

Since the total momentum flux, J1,v�x�+J2,v�x�, and total en-
ergy flux, J1,e�x�+J2,e�x�, are constants along the line
�Rankine-Hugoniot conditions�, the above differential equa-
tions �27� and �28� express the transfer of momentum and
energy from species i to species j at a given point x. Using
the expressions for Ji,v�x� and Ji,e�x� in �15� and �16�, it is
easy to show that 3ũJi,v�x�−Ji,e�x�= 1

2min−u−
3 =constant, and

therefore,

3ũ�i�x� − �i�x� = 0. �31�

This last equation will give us the desired extra relation
for the regular pressures. In general, the integrals in �29� and

�30� cannot be performed due to the velocity-dependent col-
lision kernel �v−w� appearing in the definition of Qi and 

�see �3� and �4��. In order to continue our derivation, we now
approximate this kernel by a generic velocity-independent
kernel ��x�, much in the spirit of Maxwell molecules �29�.

Using this assumption, we can solve the above integrals,
obtaining

�i�x� =
2mimj

mi + mj
n−u−��x��Ni − Nj� , �32�

�i�x� =
mimj

�mi + mj�2��x��u−
2��mi + 2mj�ñin̂j − �mj + 2mi�n̂iñj�

− 4�Njp̃i − Nip̃j�
 , �33�

where we have defined the species total number density,
Ni�x�� ñi�x�+ n̂i�x�=2n−− n̂i�x�, i=1,2. Within this approxi-
mation, Eq. �31� reduces to

Njp̃i − Nip̃j =
u−

8
�mj − mi��ñin̂j + n̂iñj� , �34�

which is the second relation between the regular pressures
we were looking for. Together with �24�, this yields

p̃i =
u−

2��mj − mi��ñin̂j + n̂iñj� + 2M̃Ni�
8�Ni + Nj�

, �35�

where we have used the previous definition M̃ �miñi+mjñj.
This result, based on the Maxwell velocity kernel approxi-
mation, gives predictions for the regular pressures that are
very close �∀ x� to the results obtained from the solution of
Eq. �31� based on the numerical evaluation of integrals �29�
and �30�, thus validating our approximation. The reason be-
hind this good agreement is that Eq. �34� does not depend on
the collision kernel ��x� chosen for the Maxwell-like ap-
proximation: the same equation is found for any kernel ��x�
one may think of, and in particular for the �unknown� opti-
mal kernel that better approximates the real velocity-
dependent kernel.

Recalling that ñi=2�n−− n̂i� and ũ= 1
2u−, Eqs. �35� express

the regular pressures p̃i= ñiT̃i, and hence the regular tempera-
tures, in terms of the singular densities n̂i. Therefore, the
problem of the shock wave reduces to solving the coupled,
strongly nonlinear differential equation �25� for n̂i�x�, i

=1,2, since all other nonconstant flow fields, ñi and T̃i, with
i=1,2, can be written in terms of n̂i.

III. RESULTS

The strong nonlinearities present in Eq. �25� prevent any
full analytical solution to the shock wave problem, so that
numerical integration must be used instead. This procedure
yields the singular densities n̂i�x�, from which all hydrody-
namic flow fields follow. We are particularly interested here
in the total number density N�x�, flow velocity u�x�, and
temperature T�x�, and their particularization to each species
�Ni�x�, ui�x�, and Ti�x�, i=1,2, respectively�. The total num-
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ber density is defined as N�x��N1�x�+N2�x�, where Ni�x�
= ñi�x�+ n̂i�x� has been defined above. The total flow velocity
and temperature fields are defined, respectively, as u�x�
���imiNi�x��−1�imiNi�x�ui�x� and T�x��N�x�−1�iNi�x�Ti�x�
�22�, where

ui � Ni
−1�

−�

+�

dv vf i�x,v� =
n−u−

Ni
,

Ti � Ni
−1�

−�

+�

dv mi�v − u�x��2f i�x,v�

=

ñiT̃i + mi
ñi�1

2
u− − u�2

+ n̂i�u− − u�2�
Ni

.

For a generic hydrodynamic flow field ��x�, we now de-
fine an associated normalized field as ���x�= ���x�
−�−� / ��+−�−�, where �±=��x→ ±��. This allows us to
compare shock profiles for different mass ratios ��m1 /m2

� �0,1�. In addition, we define the normalized excess flow
fields as ����x���2��x�−�1��x� to study the species depen-
dence of the profiles. Our results for N��x�, u��x�, and T��x�
are given in Figs. 1, 3, and 5, respectively, while the excess
fields �N��x�, �u��x�, and �T��x� are depicted in Figs. 2, 4,
and 6. It should be noted that we set the coordinate origin
x=0 so that N��x=0�= 1

2 .
A general observation is that all the profiles become

steeper, and the excess fields become more localized and
peaked around x=0, as � decreases. However, there are fun-
damental differences for the different hydrodynamic quanti-
ties. The density flow field N��x� converges toward a limiting
shape as �→0, characterized by a sudden increase of den-
sity from N��x→0−�=0 to N��x→0+�= 1

2 , followed by a
much slower relaxation toward the asymptotic value N��x
→ +��=1 �see Fig. 1�. On the other hand, the flow velocity
profile u�x� converges toward a step-like function localized
at x=0 �Fig. 3�, while the temperature field �Fig. 5� exhibits
an overshoot which sharpens and increases as �→0. In ad-
dition, all profiles are markedly asymmetrical. Figure 7 ex-
hibits all fields for several mass ratios.

The excess profiles contain the information about the rela-
tive local distribution of the hydrodynamic fields between

FIG. 1. Total density profiles �normalized� as a function of mass
ratio �. Notice the logarithmic scale in the �-axis. The inset shows
the same profiles in a 2D plot for better comparison.

FIG. 2. Excess density profiles �normalized�.

FIG. 3. Flow velocity profiles �normalized�.

FIG. 4. Excess flow velocity profiles �normalized�.
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the species. In particular, �N��x� shows that the number den-
sity of heavy particles �type 2� around the shock layer is
larger than that of light particles �type 1� �see Fig. 2�. This
excess concentration of heavy particles around the shock is
asymmetric, with most excess heavy particles lagging behind
the shock, and it increases as �→0. On the other hand, the
flow velocity u1�x� of light particles around the shock is
larger than the velocity of heavy particles �see Fig. 4�, the
difference increasing with decreasing � �notice here that
�u��x��0 involves u1�x��u2�x��. Finally, the excess tem-
perature field exhibits an interesting behavior �see Figs. 6
and 7�. First, �T��x� is mostly negative near the shock, so
heavy particles are cooler than light particles around the
shock, despite the former are denser than the latter around
x=0. In more detail, �T��x� exhibits an oscillation around
x=0, meaning that heavy particles are much colder than light
particles behind the shock layer �the cooler the smaller � is�,
while the situation is reversed in front of the shock, where
heavy particles are now more energetic than light ones �see
Fig. 6�.

To better understand some of these observations, we can
analyze the asymptotic behavior of Eqs. �25�. First, we study
how the downstream binary fluid goes toward equilibrium by

letting x�0. In this case, the singular densities are very
small �n̂i�x�0��1�, so that we can linearize Eqs. �25�, ob-
taining a simple decoupled system of differential equations

u−
dn̂i�x�

dx
= − 2� j�+ ��n−n̂i�x� , �36�

with i=1,2, and where

�i�+ �� =
u−

2

erf�	 mi

m1 + m2
�

+	m1 + m2

�mi
exp�−

mi

m1 + m2
�� �37�

is the limit of the amplitudes �26� as x→ +�. Therefore, we
find n̂i�x��exp�−x /� j� in this limit, with � j =u− / �2n−� j

�+���, so the downstream binary fluid reaches equilibrium
exponentially fast, as expected from the uncorrelated nature
of the Boltzmann equation �21–23�. This equilibration pro-
cess is characterized however by two different typical scales:
�1 controls how heavy particles �type 2� relax asymptoti-
cally, while �2 controls the behavior of light particles �type
1�. The �-dependence of both typical scales is depicted in
Fig. 8. Here we see that �2��1∀ �� �0,1�. In fact, �2 con-
verges to a constant as �→0, while �1 goes asymptotically
to 0 as �1/2 �see Eq. �37��. Therefore, a separation of scales
emerges for very small mass ratios �, with both fast and
slow evolution scales controlling the fluid relaxation. All the
macroscopic hydrodynamic fields ��x� relax asymptotically
as exp�−x /�2�, following the slowest relaxation scale associ-
ated with light particles, except for the number density for
heavy particles, which relax much faster, as exp�−x /�1�.

In the opposite limit, �→1, a singularity emerges. In fact,
the Boltzmann equation does not yield any useful informa-
tion for �=1 in one dimension: the gain and loss terms in the
collision operator are equal in this case, so that the collision
term in the Boltzmann equation is zero �see right-hand side

FIG. 5. Temperature profiles �normalized�.

FIG. 6. Excess temperature profiles �normalized�.

FIG. 7. �Color online� Density, velocity, and temperature pro-
files for each species and the mixture. From left to right and top to
bottom, �=0.000 125, 0.001, 0.016, 0.128. Velocity �temperature�
profiles have been shifted one �two� units in the vertical axis for
visual convenience.
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of Eqs. �1� and �2��. That is, collisions do not change the
velocity distributions f i�x ,v� in this limit, as expected from
the fact that equal-mass particles exchange their velocities
upon collision in 1D. Therefore there is no relaxation of
hydrodynamic fields for �=1, and the relaxation scales �i
are not defined. Alternatively, this can be interpreted as a
divergence of both �i. However, this is a singular behavior
that emerges only for �=1. As soon as �	1, normal behav-
ior is recovered. In particular, for � slightly smaller than 1,
one expects both typical scales to be almost equal, as ob-
served in Fig. 8.

The separation of scales described above for �→0 does
not only emerge for x→ +�, but characterizes the profiles
∀ x. In fact, the amplitudes �i�x� �see eqs. �26��, are such
that �1�x���2�x�∀ x as �→0. Hence, in this limit the sin-
gular density n̂2�x� changes at a much faster rate than n̂1�x�
does �see Eqs. �25��, so that we can consider n̂1�x� as a con-
stant in the scale in which n̂2�x� evolves. This effectively
decouples again the differential equations �25� �though they
are still highly nonlinear�, giving rise to a multiscale relax-
ation process. �i� In a first step, heavy particles very quickly
relax toward their equilibrium downstream asymptotic state
while light particles remain close to the upstream state. �ii�
This is followed by a relatively much slower relaxation of
light particles toward equilibrium. A good illustration of this
process can be found in the top-left panel in Fig. 7. This
two-scale relaxation mechanism for �→0 explains the lim-
iting shape described above for N��x� �see Fig. 1�, as well as
the the positive excess density �N��x� in Fig. 2. In addition,
it also explains the step-like limiting profile for the flow
velocity: u�x� is the weighted average of the species flow
velocities ui�x�, the weigh being proportional to the species
mass, so for �→0, u�x� coincides with u2�x�, which is con-
trolled by the fastest relaxation scale.

It also seems interesting to characterize the region where

the fluid is far from equilibrium. A canonical measure of the
scale or typical size associated with this region is given by
the shock width �. The shock width is usually defined as the
inverse of the maximum density profile derivative, ����
��dN /dx�max

−1 �1�. It can be also defined as the standard de-
viation of the �peaked� distribution AN��x��1−N��x��, with A
a suitable normalization constant. Both definitions give
equivalent results. The inset to Fig. 8 shows our results for
����. The shock width decreases as the mass ratio decreases,
scaling as ������1/3 for �→0 �36�. Therefore, nonequilib-
rium effects are more localized around x=0 for smaller �.
However, it is remarkable that despite the shock wave gets
steeper �� decreases� as � decreases, the typical scale char-
acterizing relaxation toward equilibrium, �2, increases with
�. Hence, although the strong nonequilibrium region is re-
duced as �→0, the consequent fluid evolution to equilib-
rium slows down.

IV. CONCLUSIONS

In this paper we have studied the response of a one-
dimensional binary fluid to a strong shock wave propagating
into it, on the basis of the Boltzmann equation. This excita-
tion drives the system far from equilibrium, therefore allow-
ing us to investigate the structure of the fluid under nonequi-
librium conditions and how equilibrium is regained
asymptotically.

Extending to fluid mixtures an elegant method by H. Grad
�24,26�, we have obtained the shock hydrodynamic profiles
characterizing the transition between the two different
asymptotic equilibrium states. In particular, we determine the
flow fields as a function of the mixture mass ratio �
=m1 /m2� �0,1�. We find in general that all profiles sharpen
as �→0. The particle number density field converges in this
limit to an asymptotic shape characterized by a sudden step-
like increase followed by a much slower relaxation to equi-
librium. The flow velocity profile converges in turn to a step-
like function, while the temperature field exhibits a
characteristic overshoot which increases with decreasing �.
In addition, the density �velocity� of heavy particles behind
the shock is larger �smaller� than that of light particles, the
differences increasing as �→0. On the other hand, heavy
particles are much cooler than light particles right behind the
shock, while the reverse situation holds in front of the shock,
where heavy particles are now slightly more energetic than
light ones.

In order to understand these results, we have performed
an asymptotic analysis of our equations. This reveals the
emergence of two very different typical length scales con-
trolling relaxation as �→0. In this limit, the fluid evolves
toward equilibrium in twos steps. �i� First, heavy particles
quickly relax toward their asymptotic downstream equilib-
rium state, while light particles remain close to the upstream
state. �ii� At a much slower pace, light particles come to
equilibrium. In this way, light particles ultimately control the
fluid’s global equilibration. Far behind the shock layer, the
hydrodynamic fields relax exponentially. Here the multiscale
relaxation mechanism is also apparent, with two typical ex-
ponential scales �i, i=1,2. In particular, �1, associated with

FIG. 8. �Color online� Mass ratio dependence of the typical
scales �i controlling the exponential relaxation of the downstream
binary fluid toward equilibrium. Notice that �1 scales as �1/2 for
small �. The solid dot signals the singular limit �=1, for which
both typical scales formally diverge. Inset: Mass ratio dependence
of the shock width � in log-log scale. The width decreases as �
��1/3 for �→0.
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heavy particles, goes to zero as �1/2, while �2, which con-
trols the global relaxation to equilibrium, increases as �
→0, converging to a constant. In addition, the size of the
strong nonequilibrium region associated with the shock
layer, as measured by the shock width ����, decreases as
������1/3 for �→0. Therefore, the fluid’s strong nonequi-
librium behavior gets more localized around x=0 as � de-
creases, despite its asymptotic relaxation to equilibrium, as
given by �2, slows down with decreasing �.

These results are specially interesting at the light of recent
numerical studies of similar 1D binary fluids
�12,13,15,18,20,37,38�. In particular, simulations show that
whenever the 1D binary fluid is perturbed away from equi-
librium, the consequent relaxation happens in such a way
that light particles always tend to absorb more energy than
heavy ones, as predicted here. In addition, light particles are
observed to equilibrate more slowly, therefore controlling the
system global relaxation. This supports the presence of two
different relaxation scales for �→0, validating our theoreti-
cal results.

The success of our Boltzmann equation approach to de-
scribe some of the structural and relaxational anomalies ob-
served in the 1D diatomic fluid would suggest extending the

present approach to understand its anomalous transport prop-
erties �see Sec. I� �12–18�. Unfortunately, this is not possible.
Anomalous transport in 1D is a direct consequence of the
long-time power-law tails characterizing the decay of corre-
lation functions in the fluid. The microscopic origin of these
tails is associated to dynamically correlated sequences of col-
lisions among fluid molecules, which are not described by
the Boltzmann equation �39�. That is, the main hypothesis on
which the Boltzmann equation is based; namely, the molecu-
lar chaos hypothesis �21–23�, breaks correlations present in
the fluid that are responsible of the power-law tails.

The strong correlations emerging in 1D fluids, and its role
in the shock wave problem, are interesting issues that de-
serve attention �37,40�. Further work in this direction, taking
into account these correlations in generalized kinetic theo-
ries, would be highly desirable to better understand the non-
equilibrium behavior of simple one-dimensional systems.
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